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Abstract: Mitochondria are the repository for various metabolites involved in diverse energy-generating
processes, like the TCA cycle, oxidative phosphorylation, and metabolism of amino acids,
fatty acids, and nucleotides, which rely significantly on flavoenzymes, such as oxidases, reductases,
and dehydrogenases. Flavoenzymes are functionally dependent on biologically active flavin adenine
dinucleotide (FAD) or flavin mononucleotide (FMN), which are derived from the dietary component
riboflavin, a water soluble vitamin. Riboflavin regulates the structure and function of flavoenzymes
through its cofactors FMN and FAD and, thus, protects the cells from oxidative stress and apoptosis.
Hence, it is not surprising that any disturbance in riboflavin metabolism and absorption of this
vitamin may have consequences on cellular FAD and FMN levels, resulting in mitochondrial
dysfunction by reduced energy levels, leading to riboflavin associated disorders, like cataracts,
neurodegenerative and cardiovascular diseases, etc. Furthermore, mutations in either nuclear or
mitochondrial DNA encoding for flavoenzymes and flavin transporters significantly contribute
to the development of various neurological disorders. Moreover, recent studies have evidenced
that riboflavin supplementation remarkably improved the clinical symptoms, as well as the
biochemical abnormalities, in patients with neuronopathies, like Brown-Vialetto-Van-Laere syndrome
(BVVLS) and Fazio-Londe disease. This review presents an updated outlook on the cellular and
molecular mechanisms of neurodegenerative disorders in which riboflavin deficiency leads to
dysfunction in mitochondrial energy metabolism, and also highlights the significance of riboflavin
supplementation in aforementioned disease conditions. Thus, the outcome of this critical assessment
may exemplify a new avenue to enhance the understanding of possible mechanisms in the progression
of neurodegenerative diseases and may provide new rational approaches of disease surveillance
and treatment.
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1. Introduction

Energy metabolism generally takes place across the plasma membrane in prokaryotes, whereas
eukaryotes have a well-defined specialized organelle called the mitochondrion. Mitochondria are
the energy-transducing mobile organelles in eukaryotic cells that produce ATP through the process
of oxidative phosphorylation, which drives cellular metabolism [1]. In addition, it acts as a site of
various metabolic processes, like the breakdown of sugars and long-chain fatty acids, the synthesis
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of amino acids, lipids, and steroids, along with numerous other reactions that are essential for the
survival of the organism. Mitochondria consist of four components: (i) an outer membrane that has
porins, which allows small molecules to enter; (ii) an inner membrane which is impermeable to ions
while the transport is mediated by a specific transport system; (iii) cristae; and (iv) the mitochondrial
matrix, which contains enzymes involved in the Krebs cycle and electron transport chain (ETC).
ETC has evolved to contain the molecular machinery for energy production in the inner mitochondrial
membranes, which consists of five protein complexes, among them three of the complexes (I, III, and IV)
pump protons (H+) to generate a H+ gradient for ATP production at complex V.

Mitochondria have their own genome, the mitochondrial DNA (mtDNA), which is located in
the mitochondrial matrix. In humans, the mitochondrial genome is a small circular DNA with a size
of 16.5 kb [2] that contains 13 polypeptides encoding seven subunits of complex I, one subunit of
complex III, three subunits of complex IV, and two subunits of complex V in respiratory chain while
genes involved in complex II are encoded by the nuclear DNA. It also contains 22 tRNA and 2 rRNA
for its translational mechanism. The biochemistry of mitochondria has been well studied, however,
its implications in the development of inborn errors of metabolism have only recently been established
and the understanding of mitochondrial diseases caused by the inheritance of genetic variations have
gained much significance in recent years. In this review, we discuss the new insights of mitochondrial
biology in neurodegenerative diseases.

2. Mitochondria—The Power House

The mitochondrial matrix serves as a host for a wide variety of metabolites involved in three
major processes, such as citric acid cycle, urea cycle, and electron transport chain. Additionally,
mitochondrion contains several electrochemically-active species (flavin adenine dinucleotide (FAD),
flavin mononucleotide (FMN), ubiquinone, and cytochrome c4), so it is involved in the production
of energy by means of electrochemical mechanisms. The predominant role of mitochondria is the
production of ATP, which is known as the energy currency for the proper functioning of the cells.
ATP is produced in the cytosol by the oxidation of glucose and pyruvate from dietary food sources by
means of cellular respiration (otherwise named as aerobic respiration) [3].

During aerobic respiration, 1%–2% of the consumed oxygen is involved in the production of
reactive oxygen species (ROS) that, in excessive amount cause, oxidative damage to DNA and proteins,
leads to mitochondrial damage [4]. The continuous production of ROS in mitochondria leads to
age-related oxidative stress that result in cellular aging. Furthermore, mtDNA is susceptible to oxidative
damage and it is interesting to note that oxidative damage of mtDNA is inversely related to the life
span of humans, whereas oxidative damage of nuclear DNA is not related to the life span [5]. Oxidative
damage of mtDNA was found to be reduced by reduced glutathione (GSH), however, the oxidation of
glutathione increases with ageing in mitochondria of various organs than in whole cells. Thus, it is
clear that mitochondria participates in oxidative damage associated with aging.

3. Riboflavin in Mitochondrial Pathways

Riboflavin, a water soluble vitamin, acts as a precursor of FMN and FAD, which are involved
in key regulatory pathways of mitochondria, such as metabolism of amino acids, fatty acids, and
purines, and the oxidation-reduction reaction essential for normal cellular growth and development [5].
Riboflavin consist of an isoalloxazine ring and a ribityl side chain, it is converted to FMN by the
addition of phosphate group to the ribityl side chain, and further converted to FAD by the addition of
ADP. Enzymes that utilize FMN and FAD are collectively known as flavor coenzymes or flavo proteins.

Riboflavin is considered a vital component of mitochondrial energy production mediated by
ETC [6]. It is particularly important for the normal production of ATP, which leads to membrane
stability and sustaining adequate energy-related cellular functions. In addition, flavo coenzymes are
also involved in drug and toxin metabolism, along with cytochrome P450 [7].
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Riboflavin obtained from exogenous dietary sources enters mitochondria from the cytosol by
means of specific transporters and is converted to FAD by riboflavin kinase and FAD synthetase which
can, be converted to riboflavin by FAD pyrophosphatase. This process is collectively known as the
Rf-FAD cycle (Figure 1). In contrast, yeast mitochondria are devoid of FAD synthetase activity, hence,
it has to obtain FAD from the cytosol through a specific transporter (FLX1) [8]. Experiments conducted
in rat liver mitochondria proved that mitochondria have its own FAD transporter that carries FAD
from the cytosol across the mitochondrial membrane for the flavinylation process [9].
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Figure 1. Riboflavin in mitochondrial pathways (RF- riboflavin; FMN- flavin mononucleotide;
FAD/FADH2- flavin adenine dinucleotide; and NAD/NADH2- nicotinamide adenine dinucleotide).

In the electron transport chain, FMN acts as a co-factor for NADH-Coenzyme Q reductase which
catalyzes the conversion of NADH to CoQ in complex I while FAD is involved in the activity of complex
II where it acts as an electron carrier and cofactor for succinate dehydrogenase, which catalyzes the
conversion of succinate to fumarate in the Kreb’s cycle and oxidative phosphorylation. Defects in ETC
produce free radical superoxide O2

−, hydrogen peroxide, nitric oxide, and highly-reactive hydroxyl
radicals, which induce membrane lipid peroxidation and DNA damage. Exposure to excessive reactive
oxygen species (ROS) potentially damages nuclear DNA and mtDNA, which is highly deleterious in
post-mitotic cells, such as neurons, where cells stop differentiation and thus, cell division is not possible
to replace the damaged DNA. Such impairments in the mtDNA lead to bioenergetic dysfunctions
that could ultimately cause neuronal cell death [10] and may be involved in the development of
mitochondria-associated neurodegenerative disorders [11].
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In mitochondrial fatty acid beta oxidation, fatty acids are activated in the cytosol and transported
into the inner mitochondrial membrane as carnitine derivatives mediated by carnitine palmitoyl
transferase I (CPT I), acylcarnitine translocase (CAT), and carnitine palmitoyl transferase II (CPT II).
Within the mitochondrial matrix, the acyl-CoA fatty acids undergo dehydrogenation by acyl-CoA
dehydrogenases, which are flavin-dependent and thus, flavins regulate the fatty acid beta oxidation
pathway [12].

4. Riboflavin Pathogenesis in Mitochondrial Dysfunction

FMN and FAD are chief prosthetic groups that activate various flavoproteins, such as nitric
oxide synthase, nitric oxide reductase, and NADPH oxidase, to protect the cell from oxidative stress
and apoptosis [13]. Although riboflavin is stored in the liver, spleen, kidney, and cardiac muscle
in the form of FAD, and protects these organs against riboflavin deficiency, its half-life is one hour;
hence, riboflavin deficiency would impair the proper functioning of these organelles. Furthermore,
energy depletion and a decrease in riboflavin kinase activity leads to the insufficient conversion of
riboflavin into flavocoenzyme and results in various anomalies, like cataracts, preeclampsia, various
types of cancers, and neurological disorders. In addition, deficiency of ETC enzymes, like NADH-CoQ
reductase, cytochrome c oxidase, and creatine kinase, leads to infantile mitochondrial myopathy [14].

Recent studies have proved riboflavin supplementation as a therapy to alleviate or reduce the
worsening of disease conditions, especially in Brown-Vialetto-Van Laere syndrome (BVVLS) and
multiple acyl-CoA dehydrogenase deficiency (MADD) [15]. Although most of the flavo enzymes are
encoded by the nuclear genome, surprisingly, they are synthesized and stored in different components
of the mitochondria for their active participation in vital pathways, like glycolysis, Kreb’s cycle,
beta oxidation, urea cycle, and ETC of mitochondria. When riboflavin is accumulated in the cytoplasm
instead of entering into mitochondria, there will be a shortage of riboflavin availability for the flavo
coenzymes present in the mitochondria. Hence, riboflavin transporters are essential for the maintenance
of riboflavin homeostasis. Till date, only mutations in riboflavin transporters were correlated with
neurologically defective phenotypes, while most of the flavoproteins also take part in key regulatory
pathways that determine the fate of the cell to undergo either normal or abnormal physiological
functions in neurological prospects.

5. Riboflavin Related Mitochondrial Dysfunction in Neurological Disorders

Mitochondria play a key role in the interconnected network to transmit and receive signals
where the central nervous system is highly dependent on energy. Furthermore, during neurogenesis
for the differentiation and development of axons and dendrites, high amounts of mitochondrial
mass is necessary to produce ATP in large quantities [16]. Hence, mitochondrial dysfunction due
to any defect in the reduction or oxidative phosphorylation reaction results in impaired oxidative
metabolism and diminished energy production which, consequently, leads to neurological disorders.
Particularly in amyotrophic lateral sclerosis (ALS), mitochondrial dysfunctions, like abnormal
mitochondrial morphology [17], mitochondria-mediated apoptosis [18], and disruption of the axonal
transport of mitochondria [19], are the primary reasons for the disease etiology. Riboflavin-related
mitochondrial dysfunction in neurological disorders are summarized in Figure 2. In particular,
riboflavin deficiency in rats resulted in reduced levels of myelin lipids, cerebrosides, sphingomyelin,
and phosphatidylethanolamine in the cerebrum and cerebellum and, consequently, led to the
impairment of brain development and maturation [20]. These observations suggested that riboflavin
plays a crucial role in the metabolism of essential fatty acids in the brain. Some of the flavo coenzymes
involved in mitochondrial dysfunction of neurological diseases are listed in Table 1.

In addition, experiments conducted in chickens showed that riboflavin deficiency resulted in
demyelination of peripheral nerve cells. Severity of demyelination was particularly high in Schwann
cells, whereas the severity was reduced in spinal nerve roots and distal nerve branches due to nutrient
accessibility [21]. Likewise, riboflavin deficiency resulted in the swelling of peripheral nerve trunks
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and led to peripheral neuropathy in racing pigeons [22]. Henceforth, a detailed knowledge about the
role of riboflavin in the mitochondrial dysfunction of neurological disorders is a prerequisite for the
discovery of drug targets and treatment.J. Clin. Med. 2017, 6, 52  5 of 13 
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Figure 2. Riboflavin related mitochondrial dysfunction in neurological disorders.

Table 1. Enzymes involved in mitochondrial dysfunction of neurological diseases.

Enzyme Neurological Disease Metabolic Function Location

Succinate dehydrogenase Complex II deficiency Krebs cycle Mitochondrial inner
membrane

Acyl Co-A dehydrogenase Acyl Co-A dehydrogenase
deficiency Beta oxidation Mitochondrial matrix

Electron transferring flavo
protein—Ubiquinone oxidoreductase Glutamic academia II C Electron transport chain Mitochondrial inner

membrane

Electron transferring flavo protein Glutamic academia II A and II B Electron transport chain Mitochondrial matrix

NADH - Ubiquinone oxidoreductase Complex I deficiency Electron transport chain Mitochondrial inner
membrane

Dihydrolipoyl dehydrogenase,
Succinate dehydrogenase and

NADH-Ubiquinone oxidoreductase
Leigh Syndrome Energy metabolism Mitochondrial matrix

Riboflavin transporter BVVLS Riboflavin uptake Plasma/Mitochondrial
membrane

6. Neurological Disorders of Mitochondrial Dysfunction

Disruption of the mitochondrial electron transport chain and other mitochondrial damage leads
to several neurological disorders. Some of the riboflavin responsive neurological disorders due to
mitochondrial dysfunction are discussed below.
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6.1. Multiple Acyl-CoA Dehydrogenase Deficiency (OMIM 231680)

Multiple acyl-CoA dehydrogenase deficiency (MADD), also called as glutaric aciduria type II,
ethylmalonic-adipic aciduria, and riboflavin-responsive C6-C10 dicarboxylic aciduria, is caused due
to the deficiency of the electron transfer flavoprotein (ETF) or its dehydrogenase and ubiquinone
oxidoreductase (ETF-QO) [23]. MADD affects various metabolic pathways involving fatty acids
and branched amino acids, lysine and tryptophan, and results in a discharge of a variety of
distinctive organic acids comprising glutaric, ethylmalonic, 3-hydroxyisovaleric, 2-hydroxyglutaric,
5-hydroxyhexanoic, adipic, suberic, sebacic, and dodecanedioic acids and glycine conjugates due to
the impairment of ATP biosynthesis and the accumulation of excessive fatty acids [24]. The blood
plasma acylcarnitine pattern also shows distinctive elevation of short-, medium-, and long-chain
acylcarnitines ranging from C8 to C16. Features of MADD include muscle weakness, non-epileptic
seizures, and atypical migraine with abnormal creatinine level. MADD is diagnosed with mutations in
the alpha and beta subunits of electron transfer flavoprotein (ETFA and ETFB), ETF dehydrogenase
(ETFDH), FAD synthase (FADS1), riboflavin transporters (SLC52A1-3), and mitochondrial FAD
transporter (SLC25A32) [15,25–28]. Studies have documented that riboflavin supplementation reduced
the abnormal behavior and normalized the biochemical profile by regulating the mitochondrial flavo
proteome [26,27,29] and are termed as riboflavin-responsive forms of MADD [30].

6.2. Brown-Vialetto-Van Laere Syndrome (OMIM 211530)

BVVLS is a rare, progressive, childhood neurodegenerative disorder characterized by progressive
pontobulbar palsy associated with sensorineural deafness. BVVLS has a prominent familial component,
consistent with an autosomal-recessive mode of inheritance in most of the patients, while autosomal
dominant [31] and X-linked inheritance [32] have also been suggested in a few cases. In BVVLS,
bilateral nerve deafness is accompanied by involvement of various motor cranial nerve palsies with
VII, IX, and XII, and rarely III, V, and VI, which develop over a relatively short period of time in
a previously-healthy individual [32,33]. Generally, BVVLS is clinically heterogeneous, presenting as
early as infancy and as late as the third decade of life [33]. Recently, defects in riboflavin transporters
SLC52A3 (formerly C20orf54) [34,35] and SLC52A2 [35,36] have been identified as the etiology in
a large proportion of BVVLS cases. Blood plasma levels of riboflavin and its active coenzyme forms,
FAD and FMN, were significantly reduced in BVVLS patients [15]. Moreover, metabolic studies of
BVVLS patients revealed the accumulation of acyl-CoA and carnitine esters in the plasma, as well
as a urine organic acid profile which both mimic the fatty acid β-oxidation defect seen in patients
with MADD. Meanwhile, oral supplementation of riboflavin showed improvement in the clinical
symptoms, as well as the biochemical abnormalities in BVVLS patients, signifying that a high dose of
riboflavin is a potential treatment for BVVLS [26]. Thus, riboflavin is found to have a critical role in
the production of substrates used for the ETC, so it is obvious that any defect in riboflavin transport
would impair ETC and consequently lead to neurodegeneration. The overall summary of riboflavin
deficiency leading to mitochondrial oxidative stress-mediated neurodegeneration is given in Figure 3.

6.3. Complex I Deficiency (OMIM 252010)

The mitochondrial respiratory chain tends to decline with age by affecting complex I and IV
of ETC, which leads to mitochondrial myopathies, like cardiomyopathies, encephalomyopathies,
and neurological myopathies [37]. Human complex I (NADH-ubiquinone reductase) consists of
at least 36 nuclear-encoded and seven mitochondrial-encoded subunits and clinical mutations in
any of these subunits are diagnosed to cause this disorder [38]. Functional characterization studies
carried out in Caenorhabditis elegans with mutation in the active site subunit of complex I revealed
that supplementation of riboflavin assembled complex I and reduced oxidative stress, lactic acidosis,
and increased metabolic functions [39]. Additionally, riboflavin supplementation normalized the
biochemical abnormalities and muscle weakness in an infant with a complex I defect by increasing
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the cellular availability of FAD [40,41]. Furthermore, mutations in mitochondrial and nuclear genes
encoding proteins that are required for proper assembly and stability of the mitochondrial respiratory
complex also lead to complex I deficiency. ACAD9 (acyl-CoA dehydrogenase-9), a flavin-dependent
acyl carrier, is involved in the proper assembly of complex I through binding with assembly factors
NDUFAF-1 and Ecsit [42]. Recently, a missense mutation (Arg532Trp) was diagnosed in the active site
of ACAD9 in a Dutch consanguineous family with complex I deficiency (OMIM 611126—complex I
deficiency due to ACAD-9), where riboflavin supplementation improved the complex I activity from
17% to 47% in the proband [43].J. Clin. Med. 2017, 6, 52  7 of 13 
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6.4. Leber Hereditary Optic Neuropathy (LHON; OMIM 535000)

LHON is a neurodegenerative disease characterized by acute or subacute loss of central vision
and optic atrophy. It arises due to the neurodegeneration of retino-ganglion cells and dysfunction of
respiratory chain complex I. Furthermore, it is the first human mtDNA disease identified to be caused
by deletion of mtDNA. LHON cases are primarily identified with mutations in any of mitochondrial
genes, including MT-ND1, MT-ND4, MT-ND4L, and MT-ND6, and over 95% of cases harbored one of
three mtDNA point mutations, G3460A (ND1), G11778A (ND4), and T14484C (ND6), which encodes
complex I subunits of the respiratory chain [44]. Studies have documented that supplementation of
riboflavin, along with vitamin C and idebenone, in 28 LHON patients reduced the recovery period of
dysfunction [45].

6.5. KearnsSayre Syndrome (OMIM 530000)

Kearns-Sayre Syndrome (KSS) is a rare neuromuscular disorder characterized by ophthalmoplegia,
retinitis pigmentosa, chronic inflammation, cortico spinal dysfunction, bulbar palsies, limb girdle
muscle weakness, sensory neural hearing loss, progressive neurodegeneration with ataxia,
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and dementia. Large deletions of mtDNA ranged in size from 2.0 to 7.0 kb [46] are known to cause
KSS by the defective oxidative phosphorylation, and the deletions are heteroplasmic. Patients also
showed deficiency of cytochome-c oxidase (COX) due to large deletions in the specific region of
mtDNA corresponding to the COX gene, which was clinically observed as ragged-red fibers in
muscle biopsies [47]. Most of the cases are sporadic since mtDNA deletions are inherited very rarely.
Deficiency of complex II of the mitochondrial respiratory chain, especially a deficiency of succinic
dehydrogenase has been revealed by enzymatic analysis [48]. Since complex II dysfunction is noticed,
a combined therapy containing cytochrome c, flavin mononucleotide, and thiamine diphosphate was
attempted, which alleviated fatigability, motor disability, corneal edema, and chilblains in the patients,
while no improvements were recorded with opthalmoplegia, blepharoptosis, or hearing loss [49].
Recent follow-up study carried out with three complex II-deficient patients showed an improvement
in neurological conditions and delayed the early onset. In addition, supplementation of riboflavin
to the fibroblast culture showed a two-fold increase in the activities of complex II and succinate
dehydrogenase (SDH) [50].

6.6. Alper’s Syndrome (OMIM 203700)

Alper’s syndrome is an autosomal recessive disorder characterized by a clinical trial of symptoms,
including psychomotor retardation, refractory seizures, and liver failure. It is a mitochondrial DNA
depletion disease of the brain that arises due to the degeneration of cerebral gray matter in infancy,
characterized by neurodegeneration of basal ganglia. It is caused due to the dysfunction in complex IV
of ETC, nuclear-encoded mitochondrial polymerase γ (PolG1) deficiency [51], and Twinkle helicase [51,52].
Alper’s syndrome patients with mutations in POLG may also undergo complex I deficiency [53].
Since it involves complex I and IV dysfunction, riboflavin could play a possible role in its regulation,
which corroborates with the study carried out in C. elegans (having mutations in NADH-ubiquinone
oxidoreductase) where riboflavin supplementation enhanced the assembly of complex I and IV that
further resulted in reduced oxidative stress and increased metabolic functions [39].

6.7. Multiple Sclerosis

Multiple sclerosis is an autoimmune disorder that affects the central nervous system through
immune cells, potentially also due to alterations in mitochondrial DNA, defective mitochondrial
DNA repair mechanisms, abnormal mitochondrial dynamics (fragmentation), impaired trafficking,
defective Ca+-mediated axonal degeneration, and abnormal levels of mitochondrial enzymes
(phosphofructokinase-2 and complex I enzymes) [54]. Earlier, administration of interleukin 6 was
found to act against ROS and protect against neuronal cell death, while recent studies carried out
in encephalomyelitis C57BL/6 mice showed that riboflavin supplementation reduced the neuronal
disability by 26.4% while the use of placebo reduced the risk by 15.4% [55]. Furthermore, riboflavin
supplementation leads to a reduction in the expression of BDNF and IL-6 in the brain of an experimental
autoimmune encephalomyelitis model of multiple sclerosis, which was correlated with the observed
beneficial effects of riboflavin on neurological motor disability and also suggested possible targets of
new rational therapeutic strategies for MS [56].

6.8. Parkinson’s Disease (OMIM 168600)

Parkinson’s disease (PD) is a progressive movement disorder that is associated with the death
of vital nerve cells in the brain. Primary symptoms include tremor, bradykinesia, stiffness of the
limbs, and postural instability. It is primarily due to the accumulation of alpha-synuclein protein
in the brain as Lewy bodies. In some instances, it is characterized by complex I ETC deficiency
where, due to endogenous oxidative damage, the respiratory chain protein complex is affected,
which subsequently leads to decreased ATP production, increased free radical production, and results
in apoptosis. Deficiency of riboflavin was shown to have impaired oxidative metabolism through
reduced glutathione reductase, pyridoxine phosphate oxidase, NADH-ubiquinone reductase, and
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NADH cytochrome c reductase [57]. Further, supplementation of riboflavin for six months with
PD patients showed improvement in the motor capacity from 41% to 71%, and demonstrated
to overcome the complex I deficiency. Thus, it is evident that riboflavin could play a role in the
conversion of oxidized glutathione to reduced glutathione by catalyzing glutathione reductase, and in
the assembly of mitochondrial protein complexes [58]. Recently, a bacterial metabolite produced
by Streptomyces venezuelae caused dopaminergic neurodegeneration in a PD model of C. elegans
expressing human α-synuclein due to the impairment of mitochondrial complex I activity. Meanwhile,
mitochondrial complex I activators, such as riboflavin and D-β-hydroxybutyrate (DβHB), rescued
dopamine neurodegeneration in C. elegans by improving both complex I and complex IV activities [59].

6.9. Alzheimer’s Disease (OMIM 104300)

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by short-term
memory loss and dementia due to the accumulation of Tau proteins in neurofibrillary tangles,
the loss of connection between nerve cells, and extracellular amyloid plaque which leads to
mitochondrial fragmentation [60]. Defects in electron transport chain enzymes, such as cytochrome
c oxidase (COX) and F(1)F(0)-ATPase, have also been implicated in the progression of AD [61].
Neurodegeneration observed in AD has been suggested to be due to impaired mitochondrial biogenesis,
defective axonal transport of mitochondria, and increased DRP1-mediated mitochondrial fission [62].
Hyperhomocysteinemia has been explained as one of the possible mechanisms for neurotoxicity in
AD, which is responsible for induced cellular oxidative stress leading to the formation of ROS to
cause neuronal cell death. Elevated plasma levels of homocysteine have been documented due to
the impaired activity of methylenetetrahydrofolate reductase (MTHFR) in one carbon metabolism of
the homocysteine remethylation pathway, which is a FAD-dependent flavoenzyme [63]. Deficiency
of cellular FAD has been shown to contribute to the functional impairment of the MTHFR 677T
variant genotype and an increase the homocysteine levels, particularly in individuals with low-folate
status [64]. Moreover, accumulation of homocysteine for longer periods is thought to be involved
in the failure of β-amyloid clearance and damage to the blood brain barrier, which develops into
cerebrovascular dysfunction, leading to AD development [65].

7. Conclusions

There is a gathering body of evidence which links the interaction between riboflavin and
flavoproteins to the protection of neuronal cells from death by oxidative stress and apoptosis.
Any anomalous expression and regulation of mtDNA and nDNA encoding of functional proteins
in the mitochondria can affect the intracellular levels of FAD and FMN, which are functionally
implicated in various pathological conditions leading to neurological disorders. Mitochondrial
defects may lead to axonal dysfunction and degeneration through a lack of ATP, increased ROS
production, and by modulating the function of various dehydrogenases of the respiratory chain.
The understanding of this relationship between mitochondria, rate of neuronal degeneration by
oxidative stress, and the protection by riboflavin is at an early stage. Thus, a comprehensive knowledge
and new experimental strategies are essential to elucidate the interplay between mitochondrial
metabolism, mitochondrial stress, riboflavin transport and metabolism, mtDNA mutation and deletion
mechanisms, and the complex neurodegeneration pathways. Such knowledge may provide new
targets for combating neurodegenerative diseases.
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