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Abstract
Choline is an essential nutrient needed for the structural integrity and signaling functions of cell
membranes; for normal cholinergic neurotransmission; for normal muscle function; for lipid
transport from liver; and it is the major source of methyl groups in the diet. Choline is critical during
fetal development, when it influences stem cell proliferation and apoptosis, thereby altering brain
and spinal cord structure and function and influencing risk for neural tube defects and lifelong
memory function. Choline is derived not only from the diet, but from de novo synthesis as well.
Though many foods contain choline, there is at least a twofold variation in dietary intake in humans.
When deprived of dietary choline, most men and postmenopausal women developed signs of organ
dysfunction (fatty liver or muscle damage), while less than half of premenopausal women developed
such signs. Aside from gender differences, there is significant variation in the dietary requirement
for choline that can be explained by very common genetic polymorphisms.
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INTRODUCTION
The 1998 Institute of Medicine recommendations on dietary reference intakes included
estimates of the Adequate Intake of choline required by humans (57). Choline is derived not
only from the diet, but as well from de novo synthesis of phosphatidylcholine catalyzed by
phosphatidylethanolamine N-methyltransferase (PEMT) in the liver (165). When deprived of
dietary choline, most adult men and postmenopausal women developed signs of organ
dysfunction (fatty liver or muscle damage) (33,159). Only 44% of premenopausal women
developed such signs. The difference in requirement occurs because estrogen induces the
PEMT gene and allows premenopausal women to make more of their needed choline
endogenously. In addition, there is significant variation in the dietary requirement for choline
that can be explained by common genetic polymorphisms. Choline is critical during fetal
development, when it influences stem cell proliferation and apoptosis, thereby altering brain
structure and function (5,31,75,85,86). Similarly it influences neural tube development (40,
112). In later life, choline deficiency causes fatty liver as well as liver and muscle damage
(33,159), and reduces the capacity to handle a methionine load, resulting in elevated
homocysteine (34), a risk factor for cardiovascular disease (46). Though many foods contain
choline (160,162), there is at least a twofold variation in dietary intake in humans (39,112).

NUTRITIONAL IMPORTANCE OF CHOLINE
Choline is a dietary component essential for normal function of all cells (158). It, or its
metabolites, assures the structural integrity and signaling functions of cell membranes; it is the
major source of methyl groups in the diet (one of choline's metabolites, betaine, participates
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in the methylation of homocysteine to form methionine); and it directly affects cholinergic
neurotransmission and lipid transport from liver (158). In most mammals, prolonged (weeks
to months) ingestion of a diet deficient in choline (and adequate though limited in methionine
and folate content) has consequences that include hepatic, renal, pancreatic, memory, and
growth disorders (158). Several comprehensive reviews of the metabolism and functions of
choline have been published (68,158).

Only a small fraction of dietary choline is acetylated (Figure 1), catalyzed by the activity of
choline acetyltransferase (reviewed in 12). This enzyme is highly concentrated in the terminals
of cholinergic neurons, but is also present in such non-nervous tissues as the placenta. The
availability of choline and acetyl-CoA influence choline acetyltransferase activity. In brain, it
is unlikely that choline acetyltransferase is saturated with either of its substrates, so that choline
(and possibly acetyl-CoA) availability determines the rate of acetylcholine synthesis (12).
Increased brain acetylcholine synthesis is associated with an augmented release into the
synapse of this neurotransmitter (26,135,146). Choline taken up by brain may first enter a
storage pool (perhaps the phosphatidylcholine in membranes) before being converted to
acetylcholine (10). The choline-phospholipids in cholinergic neurons are a large precursor pool
of choline available for use in acetylcholine synthesis (11). This may be especially important
in neurons with increased demands for choline to sustain acetylcholine release (e.g., when
particular cholinergic neurons fire frequently, or when the supply of choline from the
extracellular fluid is inadequate).

The methyl groups of choline can be made available from one-carbon metabolism, upon
conversion to betaine (reviewed in 95) (Figure 1). Formation of betaine involves oxidation to
betaine aldehyde in the inner mitochondrial membrane (72) and then the oxidation of betaine
aldehyde to form betaine; both oxidation steps are catalyzed by choline dehydrogenase. Liver
and kidney are the major sites for choline oxidation. Betaine cannot be reduced back to choline.
Thus, the oxidation pathway acts to diminish the availability of choline to tissues while, at the
same time, scavenging some methyl groups. The interrelationship of this pathway with folate
and methionine metabolism is discussed below.

A major use for choline is as a precursor for the synthesis of membrane phospholipids.
Phosphatidylcholine (sometimes called lecithin) is the predominant phospholipid (>50%) in
most mammalian membranes. Complex regulatory mechanisms control phosphatidylcholine
biosynthesis (65,137), which occurs by two pathways (Figure 1). In the first, choline is
phosphorylated and then converted to cytidine diphosphocholine (CDP-choline). This
intermediate, in combination with diacylglycerol, forms phosphatidylcholine and cytidine
monophosphate. In the other pathway, phosphatidylethanolamine is sequentially methylated
to form phosphatidylcholine, using S-adenosylmethionine as the methyl donor. The latter
pathway is most active in liver, but has been identified in many other tissues, including brain
and mammary gland (13,138,154). This pathway is discussed in detail below. Sphingomyelin,
another important membrane phospholipid, is formed from phosphatidylcholine (47).

One of the functional consequences of dietary choline deficiency in humans was the
development of fatty liver (hepatosteatosis) (17,159) because a lack of phosphatidylcholine
limits the export of excess triglyceride from liver in lipoproteins (155,156). Also, choline
deficiency in humans was associated with liver damage (elevated serum aminotransferases)
(2,4,6,159). Liver cells died by apoptosis when placed in choline-deficient medium (4,61,
116), perhaps explaining why liver cells died and leaked enzymes into blood in choline-
deficient humans. We now recognize that choline deficiency in humans can also present with
muscle damage (33). This occurs because muscle membranes are more fragile (33) and perhaps
because of induction of apoptosis via mechanisms similar to those described in liver (2,54).
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Human variation in dietary choline requirement is important for clinical practice in nutrition.
Low plasma choline concentration occurs in up to 84% of patients who require total parenteral
nutrition (TPN) (17–20,113,118), as does liver damage (elevated transaminases) (18,126) and
fatty liver (18). In some patients, the hepatic steatosis associated with TPN resolved with
choline-supplementation and returned when standard TPN was reinstituted (18).

In 1998 the U.S. Institute of Medicine's Food and Nutrition Board established an adequate
intake (AI) and tolerable upper limit (UL) for choline (57) (Table 1). The UL for choline was
derived from the lowest observed adverse effect level (hypotension) in humans (57).

CHOLINE, FOLATE, AND METHIONINE METABOLISM ARE INTERRELATED
Choline, methionine, and folate metabolism interact at the point that homocysteine is converted
to methionine. Thus, any requirement for dietary choline must be considered in relation to these
other nutrients. Homocysteine can be methylated to form methionine (38) by two parallel
pathways, both of which lower homocysteine concentrations (98). In the first, vitamins B12
and folic acid are involved in a reaction catalyzed by methionine synthase (148). Deficiency
of these nutrients (59,114), or single nucleotide polymorphisms in the genes for the enzymes
involved in this pathway (59,145,148), can result in elevated plasma homocysteine
concentrations. In addition, tetrahydrofolate is needed to scavenge one-carbon groups when
betaine is metabolized (92). The alternative pathway for the methylation of homocysteine to
form methionine is catalyzed by betaine homocysteine methyltransferase (123), an enzyme
whose activity has been reported to increase in rats during methionine excess (53). Betaine,
derived from dietary choline by the action of choline dehydrogenase, is the methyl group donor
in this reaction and supplemental oral betaine can lower plasma homocysteine concentrations
(122,150).

Perturbing metabolism of one of the methyl donors results in compensatory changes in the
other methyl donors due to the intermingling of these metabolic pathways (66,111,140). Rats
treated with the antifolate, methotrexate, had diminished pools of choline metabolites in liver
(102,111). Rats ingesting a choline-deficient diet had diminished tissue concentrations of
methionine and S-adenosylmethionine (164) and doubled plasma homocysteine concentrations
(139). We recently reported that humans who are depleted of choline have diminished capacity
to methylate homocysteine and developed elevated homocysteine concentrations in plasma
after a methionine loading test (34).

DIETARY INTAKE AND ENDOGENOUS SYNTHESIS OF CHOLINE
The U.S. Department of Agriculture recently developed the first database of choline content
in foods (160,162) (http://www.nal.usda.gov/fnic/foodcomp/Data/Choline/Choline.html).
Choline is found in a wide variety of foods that contain membranes. Excellent sources of dietary
choline include liver, eggs, and wheat germ. In foods, choline is found in free and esterified
form (as phosphocholine, glycerophosphocholine, phosphatidylcholine, and sphingomyelin).
Though it is likely that these forms are fungible, there is some evidence that they may have
different bioavailability (23) because the lipid-soluble forms bypass the liver when absorbed
from the diet, while the water-soluble forms enter the portal circulation and are mostly absorbed
by the liver. Human milk is rich in choline compounds (55), and soy-derived infant formulas
have lower total choline concentrations than do either human milk or bovine milk-derived
formulas (55). Choline intake by humans on ad libitum diets for males and females averages
8.4 mg/kg and 6.7 mg/kg of choline per day, respectively (39). However, in a study of pregnant
women in California, Shaw and colleagues observed intakes that were less than half this amount
in 25% of the women studied (112).
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The only source of choline other than diet is from the de novo biosynthesis of
phosphatidylcholine catalyzed by PEMT. This enzyme uses S-adenosylmethionine as a methyl
donor and forms a new choline moiety (13). When fed a diet deficient in choline, Pemt−/−
mice developed fatty liver and severe liver damage and died; a choline-supplemented diet
prevented this outcome (144) and reversed hepatic damage if begun early enough (143). The
PEMT pathway is not just a minor pathway that backs up the cytidine diphosphocholine
pathway for phosphatidylcholine biosynthesis. Pemt−/− mice have lower choline pools in liver
despite being fed sufficient or supplemental amounts of dietary choline (166), suggesting that
choline production by PEMT is a significant source of choline relative to dietary intake. When
PEMT is deleted in mice, plasma homocysteine concentrations fall by 50%, and when it is
overexpressed, plasma homocysteine concentrations increase by 40% (58,115), demonstrating
that PEMT activity is a major consumer of S-adenosylmethionine (and thereby a producer of
homocysteine). In brains of Pemt−/− mice, there is enough excess S-adenosylmethionine that
DNA is globally overmethylated (165).

CHOLINE REQUIREMENTS MAY VARY WITH GENDER
As noted earlier, premenopausal women, relative to males and postmenopausal women, are
resistant to developing organ dysfunction when fed a low-choline diet. This probably is because
premenopausal women have an enhanced capacity for de novo biosynthesis of choline moiety.
Studies in animal models support this hypothesis, as female rats are less sensitive to choline
deficiency than are male rats (130) and female mice produce more phosphatidylcholine via the
PEMT pathway than do male mice (97). Estrogen status may be important for this increased
PEMT activity (37); compared with controls, estradiol-treated castrated rats have more hepatic
PEMT activity (157). Similar results were reported for diethylstilbestrol-treated roosters
(142). Thus, estrogen could be the mediator of increased PEMT activity in women. During
pregnancy, estradiol concentration rises from approximately 1 nM to 60 nM at term (1,108),
suggesting that capacity for endogenous synthesis of choline should be highest during the
period when females need to support fetal development.

FEMALE CAPACITY FOR ENDOGENOUS SYNTHESIS OF CHOLINE MAY BE
IMPORTANT

Pregnancy and lactation are times when demand for choline is especially high; transport of
choline from mother to fetus (124,125) depletes maternal plasma choline in humans (78). Thus,
despite enhanced capacity to synthesize choline, the demand for this nutrient is so high that
stores are depleted. Pregnant rats had diminished total liver choline compounds compared with
nonmated controls and became as sensitive to choline-deficient diets as were male rats (161).
Because milk contains a great deal of choline, lactation further increases maternal demand for
choline, resulting in further depletion of tissue stores (55,161). Pemt−/− mice abort pregnancies
around 9−10 days gestation unless fed supplemental choline (personal observation; 165). These
observations suggest that women depend on high rates of endogenous biosynthesis of choline
induced by estrogen and dietary intake of choline to sustain normal pregnancy. It makes sense
that evolution would develop mechanisms to assure that women are less susceptible to dietary
choline deficiency and have adequate stores of choline prior to becoming pregnant. A better
understanding of why there is variation in dietary choline requirements might be important for
identifying women at greater risk for choline deficiency during pregnancy. This is a real
possibility, as the data of Shaw and colleagues show, that women in the United States vary
enough in dietary choline intake (from <300 mg/d to >500 mg/d) to influence the risk of having
a baby with a birth defect (112). Choline nutriture during pregnancy is especially important
because it influences brain development in the fetus (see below) and because it is important
for maintaining normal plasma homocysteine concentrations during pregnancy (141). High
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maternal homocysteine concentrations are associated with increased incidence of birth defects
(50).

THE FETUS LIVES IN A HIGH-CHOLINE ENVIRONMENT
Large amounts of choline are delivered to the fetus across the placenta, where choline transport
systems pump it against a concentration gradient (124). It is interesting that the placenta is one
of the few non-nervous tissues to store large amounts of choline as acetylcholine (70). Perhaps
it is a special reserve storage pool that ensures delivery of choline to the fetus. In utero, the
fetus is exposed to very high choline concentrations, with a progressive decline in blood choline
concentration thereafter until adult levels are achieved after the first weeks of life (78). Choline
concentration in amniotic fluid is tenfold greater than that present in maternal blood (S.H.
Zeisel, unpublished observations). Plasma or serum choline concentrations are six- to sevenfold
higher in the fetus and newborn than they are in the adult (99,163). High levels of choline
circulating in the neonate presumably ensure enhanced availability of choline to tissues.
Neonatal rat brain efficiently extracts choline from blood (30), and increased serum choline in
the neonatal rat is associated with twofold higher choline concentration in neonatal brain than
is present later in life. Supplementing choline during the perinatal period further increases
choline metabolite concentrations in blood and brain (43). There is a novel form of
phosphatidylethanolamine-N-methyltransferase in neonatal rat brain that is extremely active
(13); this isoform is not present in adult brain. Furthermore, in the brains of newborn rats, S-
adenosylmethionine concentrations are 40−50 nmol/g of tissue (51)—levels probably
sufficient to enable the neonatal form of phosphatidylethanolamine-N-methyltransferase to
maintain high rates of activity. As previously mentioned, human and rat milk provide large
amounts of choline to the neonate. The existence of these multiple mechanisms, which ensure
the availability of choline to the fetus and neonate, suggest that evolutionary pressures favored
exposure to high concentrations of choline in utero.

CHOLINE AND BRAIN DEVELOPMENT IN UTERO
It is widely accepted that folate affects embryogenesis of the brain. Currently, it is
recommended that all women be folate supplemented during the periconception period because
this reduces the risk for these serious defects in brain development (22,57). Folic acid
administered to women who had previously had a child with a neural tube defect lowered risk
of recurrence by 72% (91). In rodents, choline is needed for normal neural tube closure in early
pregnancy (40,41); in humans, women in the lowest quartile for dietary choline intake had four
times the risk (compared with women in the highest quartile) of having a baby with a neural
tube defect (112). Choline and folate metabolism intersect at pathways for methyl-group
donation (see discussion above) and it is reasonable to hypothesize that methylation reactions
are the mechanism they share that influences neural tube closure. As discussed below, folate
deficiency and choline deficiency have similar effects on stem cell proliferation and apoptosis
in the brain (31,32).

Choline and folate are also important in later periods of pregnancy when the memory center
of brain (hippocampus) is developing. Maternal dietary choline supplementation or choline
deficiency during late pregnancy in rodents was associated with significant and irreversible
changes in hippocampal function in the adult rodent, including altered long-term potentiation
(LTP) (63,90,103) and altered memory (79–84). More choline (about 4 times dietary levels)
during days 11−17 of gestation in the rodent increased hippocampal progenitor cell
proliferation (3,5), decreased apoptosis in these cells (3,5), enhanced LTP in the offspring when
they were adult animals (63,90,103), and enhanced visuospatial and auditory memory by as
much as 30% in the adult animals throughout their lifetimes (79–82,84,85,152). Indeed, adult
rodents decrement in memory as they age, and offspring exposed to extra choline in utero do
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not show this “senility” (81,85). Mothers fed choline-deficient diets during late pregnancy have
offspring with diminished progenitor cell proliferation and increased apoptosis in fetal
hippocampus (3,5), insensitivity to LTP when they were adult animals (63), and decremented
visuospatial and auditory memory (84). The effects of perinatal choline supplementation on
memory were initially found using radial-arm maze tasks and the Sprague-Dawley rat strain,
but other laboratories have found similar results using other spatial memory tasks, such as the
Morris water maze (14,109), using passive avoidance paradigms (104), using measures of
attention (88), using other strains of rats such as Long-Evans (127–129), and using mice
(104). The effects of choline supplementation in utero were also detected in studies on effects
of fetal alcohol exposure, where supplementation with choline attenuated behavioral alterations
but not motor abnormalities (131,132). Thus, in rodents choline supplementation during a
critical period in pregnancy causes lifelong changes in brain structure and function.

The mechanism whereby a choline supplement supplied to the dams results in a permanent
change in memory of their offspring has not been fully elucidated. Though the initial hypothesis
was that the effect of neonatal choline supplementation on memory is mediated by increased
brain choline with subsequent increased acetylcholine release, the amounts of choline that
accumulate in fetal brain after treatment of the pregnant dam are not likely of sufficient
magnitude to enhance acetylcholine release (43). Rather, supplementing choline to dams results
in significantly greater accumulation of phosphocholine and betaine in fetal brain than in
fetuses of controls (43).

The effects of choline on neural tube closure and on brain development could be mediated by
changes in the expression of genes. Dietary choline deficiency not only depletes choline and
choline metabolites in rats, but also decreases S-adenosylmethionine concentrations (117,
164), with resulting hypomethylation of DNA (74,134). DNA methylation occurs at cytosine
bases that are followed by a guanosine (CpG sites) (52) and influences many cellular events,
including gene transcription, genomic imprinting, and genomic stability (60,64,105). In
mammals, about 60% to 90% of 5′-CpG-3′ islands are methylated (62). When this modification
occurs in promoter regions, gene expression is altered (9); increased methylation is associated
with gene silencing or reduced gene expression (62). In choline-deficient cells in culture, and
in fetal rodent brains from mothers fed choline-deficient diets, methylation of the CDKN3 gene
promoter is decreased, resulting in overexpression of this gene, which inhibits cell proliferation
(93,94). In choline-deficient liver, there is hypomethylation of specific CCGG sites within
several genes for which mRNA levels were increased, including c-myc, c-fos, and c-Ha-ras
(24). Hypomethylation of CpG sites and c-myc gene overexpression occurs in hepatocellular
carcinomas induced by a choline-deficient diet in rats (134). It is also reasonable that maternal
diet during pregnancy could alter the methylation status of fetal DNA. For example, feeding
pregnant pseudoagouti Avy/a mouse dams a choline methyl-supplemented diet altered
epigenetic regulation of agouti expression in their offspring, as indicated by increased agouti/
black mottling of their coats (28,153). It is clear that the dietary manipulation of methyl donors
(either deficiency or supplementation) can have a profound impact upon gene expression and,
by consequence, upon the homeostatic mechanisms that ensure the normal function of
physiological processes.

Whether these findings in rodents apply as well to humans is not known. Of course, human
and rat brains mature at different rates, with rat brain comparatively more mature at birth than
is the human brain. In humans, the architecture of the hippocampus continues to develop after
birth, and by 4 years of age it closely resembles adult structure (35). This area of brain is one
of the few areas in which nerve cells continue to multiply slowly throughout life (76,136). Are
we varying the availability of choline when we feed infants formula instead of milk? Does the
form and amount of choline ingested contribute to variations in memory observed between
humans? All are good questions that are worthy of additional research. The observation by
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Shaw and colleagues (112) that women eating low-choline diets have a greatly increased risk
for having a baby with a neural tube defect supports the suggestion that the basic research in
rodents will be applicable to the human condition.

CHOLINE AND NEURONAL FUNCTION IN ADULTS
As discussed above, choline accelerates the synthesis and release of acetylcholine in nerve
cells (12,26,27,49,133,135). A specific carrier mechanism transports free choline across the
blood-brain barrier at a rate that is proportional to serum choline concentration (29,100).
Phosphatidylcholine may be carried into neurons as part of an ApoE lipoprotein (101,149).
Choline derived from phosphatidylcholine may be especially important when extracellular
choline is in short supply, as might be expected to occur in advanced age because of decreased
brain choline uptake in older adults (25). Abnormal phospholipid metabolism in Alzheimer's
disease (96) results in reduced levels in brain (at autopsy) of phosphatidylcholine,
phosphatidylethanolamine, choline, and ethanolamine and increased levels of
glycerophosphocholine and glycerophosphoethanolamine.

Mice and rats exhibit an age-related loss of memory function. In adult animals, chronic dietary
intake low in choline exacerbated this memory loss, whereas choline-enriched diets eaten by
adult animals diminished memory loss (8). Young choline-deficient mice performed as poorly
as much older mice; choline-supplemented older mice performed as well as young three-
month-old mice. Supplemented mice did have changes in the shape (more dendritic spines) of
their neurons in the hippocampus (87). No equivalent experiments have been reported in
humans.

Studies have been performed on the effects of short-term administration of choline or lecithin
on the memory of normal humans and the results reported vary. In a double-blind study using
normal college students, 25 g of phosphatidylcholine caused significant improvement in
explicit memory, as measured by a serial learning task; this improvement might have been due
to the improved responses of slow learners (69). A single oral 10 g dose of choline chloride
given to normal volunteers significantly decreased the number of trials needed to master a
serial-learning word test (119). The precursor for formation of phosphatidylcholine, cytidine
diphosphocholine (CDP-choline), also has been tested for memory-enhancing effects. In a
randomized, double-blind, placebo-controlled study, volunteers were treated with 1000 mg/d
CDP-choline or placebo for three months. CDP-choline improved immediate and delayed
logical memory (121). In a second study, oral administration of CDP-choline (500−1000 mg/
day) for four weeks to elderly subjects with memory deficits but without dementia resulted in
improved memory in free recall tasks, but not in recognition tests (7). In a double-blind study,
patients with early Alzheimer-type dementia were treated with 25 g/day phosphatidylcholine
for six months. Modest improvements were observed compared with placebo in several
memory tests (71,73). However, there are studies in which the choline effect on memory was
not observed in normal subjects (36,48,89) or in patients with dementias (15,42,147).

GENE POLYMORPHISMS AND DIETARY CHOLINE REQUIREMENTS
As discussed above, there is a difference in the dietary choline requirement for premenopausal
women versus postmenopausal women and men. Estrogen induction of endogenous synthesis
is the likely reason. However, additional reasons for this variance in dietary choline
requirements must be factors because some men and women develop organ dysfunction when
fed a low-choline diet, while others do not. Some men and women require more than 850 mg/
70 kg/d choline in their diet, while others require less than 550 mg/kg/d (S.H. Zeisel,
unpublished data).
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Genetic variation likely underlies these differences in dietary requirements. From what we
understand about choline metabolism, several pathways could influence how much choline is
required from diet, and single-nucleotide polymorphisms (SNPs) in these pathways might be
of importance. Specifically, polymorphisms in the folate pathways could limit the availability
of methyltetrahydrofolate and thereby increase use of choline as a methyl donor.
Polymorphisms in the PEMT gene might alter endogenous synthesis of choline, and
polymorphisms in other genes of choline metabolism could influence dietary requirements by
changing the utilization of choline moiety.

We developed a clinical methodology for phenotyping individuals with respect to their
susceptibility to developing organ dysfunction when fed a low-choline diet (21,33,34). In a 95-
day repeated-measure, within-subject study with graded repletion, adult men and women (pre-
and postmenopausal) ages 18−70 were fed a standard diet containing a known amount of
choline (550 mg/70 kg/d; baseline). On day 11 subjects were placed on a diet containing <50
mg choline/day for up to 42 days. Blood and urine were collected to measure various
experimental parameters of dietary choline status and markers of organ dysfunction (serum
creatine phosphokinase, alanine amino transferase, aspartate amino transferase) and liver fat
level was assessed by magnetic resonance imaging. If at some point during the depletion period,
functional markers indicated organ dysfunction associated with choline deficiency, subjects
were switched to a diet containing 137 mg/70 kg/d choline (low or normal folate) for 10 days.
If the functional markers indicated that deficiency status persisted, subjects were then switched
to a diet containing 275 mg/70 kg/d choline (low or normal folate) for 10 days. If markers of
organ dysfunction did not indicate repletion at this time, subjects were switched to a diet
containing 413 mg/70 kg/d choline (low or normal folate) for 10 days. If still not repleted,
subjects were fed a diet containing at least 550 mg/70 kg/d choline (low or normal folate) until
repleted.

We found that premenopausal women were less likely to develop organ dysfunction compared
with men and postmenopausal women when challenged with a choline-deficient diet (L.M.
Fischer, K.A. da Costa, L. Kwock, P. Stewart, S. Stabler, R. Allen, S.H. Zeisel, manuscript in
preparation). We found no effect of folate status on susceptibility to choline deficiency.

We examined whether major genetic variants of folate metabolism modify susceptibility of
humans to choline deficiency (67). Premenopausal women who were carriers of the very
common 5,10-methylenetetrahydrofolate dehydrogenase-1958A (MTHFD1) gene allele were
more than 15 times as likely as noncarriers to develop signs of choline deficiency (p < 0.0001)
on the low-choline diet. Sixty-three percent of our study population had at least one allele for
this SNP. As noted above, two additional reactions, mediated by methylenetetrahydrofolate
dehydrogenase and methenyltetrahydrofolate cyclohydrolase, can convert 10-
formyltetrahydrofolate to 5,10-methylenetetrahydrofolate (Figure 1). Whereas the formation
of 5-methyltetrahydrofolate is practically irreversible in vivo, the interconversion of 5,10-
methylenetetrahydrofolate and 10-formyltetrahydrofolate is closer to equilibrium (56). This
means that 5,10-methylenetetrahydrofolate may be directed either toward homocysteine
remethylation or away from it. The MTHFD1 G1958A polymorphism may thus affect the
delicately balanced flux between 5,10-methylenetetrahydrofolate and 10-
formyltetrahydrofolate and thereby influence the availability of 5-methyl tetrahydrofolate for
homocysteine remethylation. This would increase demand for choline as a methyl group donor.
It is of interest that the risk of having a child with a neural tube defect increases in mothers
with the G1958A SNP in MTHFD1 (16).

5,10-methylenetetrahydrofolate can be reduced by MTHFR to 5-methyltetrahydrofolate. Mice
that are Mthfr−/− become choline deficient (110), an important observation because many
humans have genetic polymorphisms that alter the activity of this enzyme (106,151). In our
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study in humans described above, the effects of the C677T and A1298C polymorphisms of the
MTHFR gene and the A80C polymorphism of the reduced folate carrier gene were not
statistically significant. A larger study is needed to have adequate power to determine if these
SNPs have some effect on human choline requirements.

As noted above, PEMT encodes for a protein responsible for endogenous formation of choline.
We examined genes of choline metabolism and identified an SNP in the promoter region of
the PEMT gene (−939G → C; rs12325817) that was associated with greatly increased
susceptibility to choline deficiency in women (K.A. da Costa, O.G. Kozyreva, J. Song, J.A.
Galank, L.M. Fischer, S.H. Zeisel, manuscript submitted). Given the sexual differences in the
effect of PEMT rs12325817, it is possible that this SNP alters the estrogen responsiveness of
the promoter. The frequency of this variant allele was 0.74. Another SNP in exon 8 of PEMT
results in a 30% loss of function and is associated with increased risk for nonalcoholic fatty
liver disease (120). Studies are under way in our laboratory to identify other genetic differences
that contribute to individual variability in dietary requirements for choline.

SUMMARY
Understanding dietary choline requirement and its modulation by genetic polymorphisms has
public health significance, especially because this nutrient is important for brain development.
Current dietary recommendations for choline are likely too low for some men. In addition,
these recommendations did not consider genetic variation as a modulator of dietary requirement
because it was assumed that functional polymorphisms would be too rare (<5% of population)
to be considered. It is clear that this assumption is not true for SNPs in folate metabolism (where
63% of subjects had at least one allele for the MTHFD1 SNP) or for SNPs in choline
metabolism (where 74% of subjects had at least one allele for the PEMT promoter SNP). As
discussed above, women with low dietary choline intake have a markedly increased risk of
having a baby with neural tube defects (112). There is solid science in animal models that
suggests choline is critical for normal brain development (31). Choline deficiency has other
health consequences—it is associated with liver and muscle damage and with an exaggerated
plasma homocysteine rise after a methionine load (34). Elevated plasma homocysteine is an
independent risk factor for cardiovascular disease and stroke in humans (44,45,77).
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Figure 1.
Choline metabolism and links to methionine and folate metabolism. The pathways described
are all present in liver, with other tissues having one or more of these pathways. BHMT, betaine
homocysteine methyltransferase; CHDH, choline dehydrogenase; MTHFD,
methylenetetrahydrofolate dehydrogenase; MTHFR, methylenetetrahydrofolate reductase;
PEMT, phosphatidylethanolamine-N-methyltransferase.
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TABLE 1
Dietary Reference Intake values for choline

Population Age Adequate intake (AI) Tolerable upper limit (UL)

AI for infants 0 to 6 months 125 mg/day, 18 mg/kg Not possible to establish*
6 to 12 months 150 mg/day

AI for children 1 through 3 years 200 mg/day 1000 mg/day
4 through 8 years 250 mg/day 1000 mg/day
9 through 13 years 375 mg/day 2000 mg/day

AI for males 14 through 18 years 550 mg/day 3000 mg/day
19 years and older 550 mg/day 3500 mg/day

AI for females 14 through 18 years 400 mg/day 3000 mg/day
19 years and older 425 mg/day 3500 mg/day

AI for pregnancy All ages 450 mg/day Age-appropriate UL
AI for lactation All ages 550 mg/day Age-appropriate UL

From Institute of Medicine, National Academy of Sciences USA. 1998. Dietary Reference Intakes for Folate, Thiamin, Riboflavin, Niacin, Vitamin
B12, Panthothenic Acid, Biotin, and Choline. Vol. 1. Washington, DC: Natl. Acad. Press.

*
Source of intake should be food and formula only.
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