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Riboflavin (vitamin B-2) and health1,2

Hilary J Powers

ABSTRACT
Riboflavin is unique among the water-soluble vitamins in that
milk and dairy products make the greatest contribution to its
intake in Western diets. Meat and fish are also good sources of
riboflavin, and certain fruit and vegetables, especially dark-green
vegetables, contain reasonably high concentrations. Biochemi-
cal signs of depletion arise within only a few days of dietary dep-
rivation. Poor riboflavin status in Western countries seems to be
of most concern for the elderly and adolescents, despite the
diversity of riboflavin-rich foods available. However, discrep-
ancies between dietary intake data and biochemical data suggest
either that requirements are higher than hitherto thought or that
biochemical thresholds for deficiency are inappropriate. This
article reviews current evidence that diets low in riboflavin pres-
ent specific health risks. There is reasonably good evidence that
poor riboflavin status interferes with iron handling and con-
tributes to the etiology of anemia when iron intakes are low. Var-
ious mechanisms for this have been proposed, including effects
on the gastrointestinal tract that might compromise the handling
of other nutrients. Riboflavin deficiency has been implicated as
a risk factor for cancer, although this has not been satisfactorily
established in humans. Current interest is focused on the role
that riboflavin plays in determining circulating concentrations
of homocysteine, a risk factor for cardiovascular disease. Other
mechanisms have been proposed for a protective role of
riboflavin in ischemia reperfusion injury; this requires further
study. Riboflavin deficiency may exert some of its effects by
reducing the metabolism of other B vitamins, notably folate and
vitamin B-6. Am J Clin Nutr 2003;77:1352–60.
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INTRODUCTION

Riboflavin (7,8-dimethyl-10-ribityl-isoalloxazine) is a water-
soluble vitamin present in a wide variety of foods. It was initially
isolated, although not purified, from milk whey in 1879 and given
the name lactochrome. It can be crystallized as orange-yellow
crystals and in its pure form is poorly soluble in water. Its most
important biologically active forms, flavin adenine dinucleotide
(FAD) and flavin mononucleotide (FMN), participate in a range of
redox reactions, some of which are absolutely key to the function
of aerobic cells. Despite this and the facts that riboflavin defi-
ciency is endemic in many regions of the world and that certain
sections of populations in affluent societies have low intakes, stud-
ies of effects of inadequate riboflavin intakes have attracted lim-
ited interest. In light of the recent interest in the putative role of
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riboflavin in protecting against cancer and cardiovascular disease,
it is appropriate to reevaluate the metabolic roles of this vitamin
and the public health relevance of low intakes.

RIBOFLAVIN IN FOOD, ABSORPTION, AND TRANSPORT

Food sources of riboflavin

Milk and dairy products make the greatest contribution to
riboflavin intake in Western diets, making riboflavin exceptional
among the water-soluble vitamins. National dietary surveys in the
United Kingdom report that, on average, milk and dairy products
contribute 51% of intake in preschool children, 35% in school-
children, 27% in adults, and 36% in the elderly. Cereals, meats
(especially offal), and fatty fish are also good sources of
riboflavin, and certain fruit and vegetables, especially dark-green
vegetables, contain reasonably high concentrations.

Riboflavin deficiency is endemic in populations who exist on
diets lacking dairy products and meat (1–5). In Guatemala, the
riboflavin status of elderly persons was highly correlated with the
frequency of consumption of fresh or reconstituted milk (2). The
National Diet and Nutrition Survey of young people aged 4–18 y
(6) reported a high prevalence of poor riboflavin status, determined
biochemically, among adolescent girls in the United Kingdom. A
clear age-related decrease in the habitual consumption of whole
milk was reported for both girls and boys. The most recent National
Food Consumption Survey in the United Kingdom (7) confirmed a
continuing trend toward lower household consumption of liquid
whole milk (47% decrease since 1990). This is partly offset by an
increase in the household consumption of semi-skim and other
skimmed milks, although not fully skimmed milk. Grain products
contain low natural amounts of riboflavin, but fortification practices
have led to certain breads and cereals being very good sources of
riboflavin. Cereals now contribute > 20% to the household con-
sumption of riboflavin in the United Kingdom. Daily consumption
of breakfast cereal with milk would be expected to maintain an ade-
quate intake of riboflavin. Thus, it is not surprising that various stud-
ies from different countries have shown a higher riboflavin intake
or better riboflavin status among those who consume cereal at break-
fast than among those who do not, irrespective of age (8–10).
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Vegetarians with access to a diversity of fruit and vegetables
can avoid deficiency, although intakes in vegetarians may be lower
than in omnivores (11), and elderly vegetarians may be at higher
risk (12). Although relatively heat-stable, riboflavin is readily
degraded by light. Milk kept in glass bottles and delivered to the
doorstep might be particularly susceptible to loss through this
route, which is also associated with flavor changes, because the
oxidative products of photolysis can damage milk lipids. This light
sensitivity of riboflavin has led to loss of riboflavin from banked
breast milk used in the parenteral nutrition of newborns (13).

Bioavailability

A small amount of riboflavin is present in foods as free
riboflavin, which is an isoalloxazine ring bound to a ribitol side
chain; most is present as the derivative FAD, and a smaller
amount occurs as the monophosphorylated form, FMN. FAD and
FMN occur predominantly in a non-covalently-bound form to
enzymes; flavins that are covalently bound do not appear to be
available for absorption (14). In contrast with most foodstuffs,
milk and eggs contain appreciable quantities of free riboflavin
bound to specific binding proteins (15). A prerequisite for the
absorption of dietary riboflavin is the hydrolysis of FAD and
FMN to riboflavin, catalyzed by nonspecific phosphatases in the
brush border membranes of enterocytes. Absorption takes place
predominantly in the proximal small intestine through an active,
carrier-mediated, saturable transport process (16) that is reported
to be linear up to �30 mg riboflavin given in a meal (17). There
is little additional absorption of riboflavin in amounts greater than
this (18). Urinary excretion increases linearly with increasing
intakes in riboflavin-replete subjects, with an absorption half-life
of 1.1 h (18). Initially, free riboflavin is taken up into enterocytes
and undergoes ATP-dependent phosphorylation catalyzed by
cytosolic flavokinase (EC 2.7.1.26) to form FMN; most of this is
further converted to FAD by the FAD-dependent FAD synthetase
(EC 2.7.7.2). Nonspecific phosphatases act on intracellular
flavins to permit transport across the basolateral membrane.
Riboflavin may enter the plasma from the small intestine as the
free form or as FMN.

Research has indicated that carrier-mediated absorption of
riboflavin in the colon might be more important than previously
thought (19). Riboflavin synthesized by bacterial metabolism in
the colon might therefore be a more important source of this vita-
min than previously recognized.

Little information is available regarding the relative bioavail-
ability of riboflavin from different food sources. However, no
reports have suggested that the efficiency of absorption of dietary
riboflavin is a limiting factor in determining riboflavin status. The
upper limit of the uptake process greatly exceeds usual daily
intakes (see the section “Dietary requirements for riboflavin”).

Transport and metabolism

Free riboflavin is transported in the plasma bound both to
albumin and to certain immunoglobulins, which will also bind
flavin coenzymes (20). Other riboflavin binding proteins are spe-
cific to pregnancy. Riboflavin binding proteins expressed in
fetuses of different species are evidently essential to normal fetal
development. Early classic studies identified a riboflavin binding
protein in chicken egg white that is induced by estrogen and is
essential to fetal survival (21). Further studies in various other
species confirmed the presence of similar riboflavin binding pro-
teins in the circulation, which have been ascribed various functions,

including placental transport (22). Elevated plasma binding of
riboflavin has been reported in patients with malignancies, attrib-
utable to an elevation in specific immunoglobulins, which may
contribute to riboflavin retention in such patients (23).

Almost all riboflavin in tissues is enzyme bound, such as FAD
covalently bound to succinic dehydrogenase (EC 1.3.5.1) (24).
Unbound flavins are relatively labile and are rapidly hydrolyzed
to free riboflavin, which diffuses from cells and is excreted. The
intracellular phosphorylation of riboflavin is therefore a form of
metabolic trapping key to riboflavin homeostasis (25).

Intakes of riboflavin in excess of tissue requirements are
excreted in the urine as riboflavin or other metabolites, such as
7-hydroxymethylriboflavin (7-�-hydroxyriboflavin) and lumi-
flavin. Some urinary metabolites reflect bacterial activity in the
gastrointestinal tract as well (26).

DIETARY REQUIREMENTS FOR RIBOFLAVIN

Balance studies in humans show a clear increase in the urinary
excretion of riboflavin as riboflavin intakes increase, with a sharp
and continuous rise in excretion at intakes above �1 mg/d (27).
Elderly subjects consuming a riboflavin supplement of 1.7 mg
above their habitual intake of 1.8 mg showed a urinary excretion
of riboflavin that was twice that of unsupplemented subjects con-
suming 1.8 mg from the diet alone (28). The inflection of the uri-
nary excretion curve is considered to reflect tissue saturation. Uri-
nary excretion of riboflavin is, however, not a sensitive marker of
very low riboflavin intakes, and the preferred method for assess-
ing riboflavin status is stimulation of the FAD-dependent ery-
throcyte glutathione reductase (EC 1.6.4.2) in vitro. The results
are expressed as an activation coefficient (EGRAC), such that the
poorer the riboflavin status the higher the activation coefficient.
Numerous studies have shown the sensitivity of this measurement
to riboflavin intakes, especially at daily intakes ≤ 1.0 mg (2, 5).
Such studies have also highlighted the speed with which tissue
riboflavin depletion and repletion occur. Although in experimen-
tal riboflavin deficiency FAD is conserved at the expense of free
riboflavin (29), there is no store of riboflavin or its metabolites
(ie, no site from which riboflavin can be mobilized in times of low
dietary intake). There is only a small difference between intakes
associated with biochemical deficiency (< 0.5 mg) and those asso-
ciated with tissue saturation (> 1.0 mg) in adults (30). Current rec-
ommended nutrient intakes in the United Kingdom range from
0.4 mg/d in infancy to 1.3 mg/d in adult females. An increment
has been set of 0.3 mg in pregnancy and 0.5 mg during lactation
to cover increased tissue synthesis for fetal and maternal devel-
opment and riboflavin secretion in milk. These values are similar
to recommendations made by the World Health Organization in
1974 (31), the European population reference intake (32), and the
US recommended dietary allowance (33).

GROUPS AT RISK OF LOW INTAKES

The adequacy of riboflavin intakes by population groups can
be evaluated in terms of daily dietary intake or with the use of bio-
markers of status.

Pregnant women, lactating women, and infants

Most studies of riboflavin status among pregnant or lactating
women have been conducted in communities where riboflavin
intakes are low. Under these circumstances, a progressive fall in
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riboflavin status occurs during the third trimester, and clinical
signs of deficiency are most evident around parturition (34–37).
Riboflavin depletion during gestation in rats and mice leads to
fetal resorption (38). There are reports from as early as the 1940s
of various congenital malformations associated with riboflavin
deficiency in rats and mice (38–40). The relevance of these effects
to humans is unclear, but a recent report implicated riboflavin defi-
ciency in the etiology of recurrent cleft lip and palate in siblings
(41), although the subjects were probably also deficient in vita-
min A and folic acid.

If maternal status is poor during gestation, the infant is likely to be
born riboflavin deficient (5). Riboflavin status characteristically
improves transiently in the neonatal period, even when maternal
riboflavin status is poor, but predictably deteriorates around the time
of weaning. Breast-milk riboflavin concentrations are fairly sensitive
to maternal riboflavin intake, and can be moderately increased by
riboflavin supplementation of the mother when natural intake is low
(5, 42, 43). Even in well-nourished communities, concentrations of
riboflavin in breast milk are considerably lower than in cow milk.
Infants receiving banked breast milk through nasogastric tubing may
be at risk of developing transient riboflavin deficiency because of
losses in the milk during collection, storage, and administration (13).
Phototherapy used to treat hyperbilirubinemia in neonates is also asso-
ciated with transient deterioration in riboflavin status (44). Transient
riboflavin deficiency has been documented in infants born prema-
turely, although no functional deficits have been described (45, 46).

Schoolchildren

Riboflavin deficiency among schoolchildren has been docu-
mented in many regions of the world where the intake of milk
products and meat is limiting (1, 4, 47). Riboflavin deficiency
among children in the West seems to be largely confined to ado-
lescents, especially girls. The National Diet and Nutrition Survey
of young people aged 4–18 y in the United Kingdom collected
dietary intake and riboflavin status data from a representative
sample of 2127 schoolchildren (6). The proportion of boys with
biochemical values indicative of poor riboflavin status rose from
59% among 4–6-y-olds to 78% among 7–10-y-olds. Ninety-five
percent of 15–18-y-old girls had evidence of low riboflavin sta-
tus. Riboflavin status, expressed as EGRAC, was significantly cor-
related with estimates of dietary intake. Mean riboflavin intakes
showed a progressive increase with age among boys, but this was
not evident among girls. Importantly, there was a marked decline
in milk consumption with increasing age in both boys and girls,
and in 15–18-y-olds, milk contributed only 10% of the daily
riboflavin intake, compared with 25% among 4–6-y-olds. Com-
pared with riboflavin intake data collected in the 1983 Diets of
British Schoolchildren survey (in children aged between 10 and
15 y; 48), current mean and median intakes show a trend to be
lower for both girls and boys. Data from other European countries
confirm an age-related decline in milk consumption among chil-
dren (49, 50). The functional significance of poor riboflavin sta-
tus among adolescents is not yet known, but there may be impli-
cations for the handling of dietary iron, which would be important
for the 50% of 15–18-y-old girls who have iron intakes less than
the lower reference nutrient intake.

A correlation between milk consumption and riboflavin status
among adolescents in New York City was reported in 1980 (51).
Groups consuming ≥ 3 cups milk/d (�720 mL/d) had a mean
EGRAC of 1.09 compared with 1.37 among those who consumed
< 1 cup/wk (< 240 mL/wk).

The elderly

The results of the 1994–1995 National Diet and Nutrition Sur-
vey of people aged ≥ 65 y provide the most up-to date data for this
age group in the United Kingdom. The sampling methods ensure
that the data are representative of this age group in the United
Kingdom. The study recruited 2172 free-living subjects and 454
subjects from institutions. Dietary intake data gave little cause for
concern regarding riboflavin, with < 10% from either group hav-
ing intakes less than the lower reference nutrient intake. The bio-
chemical data gave a somewhat different picture, however. Forty-
one percent of the free-living subjects and 35% of the
institutionalized subjects had evidence of biochemical deficiency,
expressed as EGRAC, the most commonly used marker of
riboflavin status (52). EGRAC was highly correlated with esti-
mates of intake. The apparent discrepancy between the dietary
intake data and the status data may reflect increased requirements
for riboflavin with increasing age as the result of reduced effi-
ciency of absorption, although studies to date do not generally
support such an effect (2, 53). Two recent studies of elderly peo-
ple in the United Kingdom drew similar conclusions regarding the
adequacy of intake relative to current dietary reference values and,
by using a less conservative threshold for deficiency, reported sub-
optimal status in 49% and 78% of subjects, respectively (54, 55).

Large surveys in the United States reported riboflavin deficiency
among the elderly to be between 10% (56) and 27% (57) on the
basis of biochemical and dietary intake criteria, respectively. Esti-
mates of the prevalence of riboflavin deficiency in various Euro-
pean countries range between 7% and 20% (58, 59), but there is a
lack of standardization for the deficiency threshold for EGRAC.

Athletes

Despite the anticipated effect of riboflavin deficiency on phys-
ical work performance, relatively few studies have shown a rela-
tion. Multimicronutrient supplements that included riboflavin had
beneficial effects on work performance in both Yugoslavian
schoolchildren (60) and Gambian schoolchildren (61). These mul-
tisupplement studies were carried out in populations where
riboflavin status was poor. There is no evidence that in generally
well-nourished communities the riboflavin status of elite athletes
is different from that of nonathletic control subjects (62, 63). Sim-
ilarly, no published studies have shown that riboflavin deficiency
specifically impairs work performance or that riboflavin supple-
ments increase performance in healthy individuals. On the other
hand, some studies report that vigorous exercise may deplete
riboflavin (64, 65).

FUNCTIONS OF RIBOFLAVIN AND CONSEQUENCES
OF LOW INTAKES

Riboflavin in intermediary metabolism

It is well established that riboflavin participates in a diversity of
redox reactions central to human metabolism, through the cofac-
tors FMN and FAD, which act as electron carriers (66). Most
flavoproteins use FAD as a cofactor. Inadequate intake of
riboflavin would therefore be expected to lead to disturbances in
steps in intermediary metabolism, with functional implications.
In fact, it is sometimes difficult to trace physiologic and clinical
effects of riboflavin deficiency to specific metabolic “blocks.”

Riboflavin deficiency in rats was associated with a dose-
response, tissue-specific reduction in succinate oxidoreductase
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(EC 1.3.99.1; succinate dehydrogenase) activity (67, 68). Such an
effect may have implications for energy production via oxidative
phosphorylation of the electron transport chain.

Steps in the cyclical � oxidation of fatty acids are also depend-
ent on flavins as electron acceptors. An effect on the � oxidation
of fatty acids is thought to be responsible for the altered fatty acid
profile in hepatic lipids in severely riboflavin-deficient rats (69,
70), which seems to be independent of the dietary source of lipid.
The most marked effect was an increase in 18:2n�6 and a lower-
ing of 20:4n�6. Similar but less striking differences were
observed in plasma, erythrocyte membranes, and kidney. The
influence of riboflavin deficiency on fatty acid profiles may reflect
an overall reduction in the � oxidation of fatty acids, while essen-
tial fatty acids present in the diet accumulate. Weanling rats fed a
riboflavin-deficient diet rapidly showed impaired oxidation of
palmitoyl CoA and stearic, oleic, and linoleic acids (71, 72). Asso-
ciated with this is the excretion of various dicarboxylic acids,
resulting from microsomal and peroxisomal handling of the fatty
acids (73–75). This scenario has its counterpart in humans with
inborn errors of lipid metabolism leading to organic aciduria that
is responsive to pharmacologic doses of riboflavin (76). Transient
riboflavin depletion associated with phototherapy in full-term
neonates was not associated with any measurable change in long-
chain fatty acid � oxidation (77). An elegant stable-isotope
approach to measuring fatty acid oxidation in premature infants
with riboflavin deficiency also failed to detect any effects of
riboflavin supplementation (46). It is unknown whether riboflavin
deficiency in other human groups is associated with impaired fatty
acid oxidation.

Riboflavin deficiency and developmental abnormalities

Early studies of riboflavin deficiency in pregnant animals doc-
umented abnormal fetal development with a variety of character-
istics. Diverse skeletal and soft tissue abnormalities are well
described in the offspring of rats and mice fed riboflavin-deficient
diets (78). The importance of riboflavin carrier protein to fetal
development has been documented in mice (79) and chickens (21).
Riboflavin deficiency, along with deficiency of other vitamins, has
been implicated in the etiology of cleft lip-palate abnormalities in
2 infants born to a woman with malabsorption syndrome (41),
although no measurement of riboflavin status was made, so the
association remains unconfirmed. The role of riboflavin in gas-
trointestinal development is discussed in the section “Riboflavin
and gastrointestinal development.”

Riboflavin and hematologic status

Very early studies of riboflavin deficiency in human popula-
tions (in which it almost certainly coexisted with other deficien-
cies) and animals indicated effects of riboflavin on aspects of the
hemopoietic system. Riboflavin-responsive anemia in humans was
described by Foy and Kondi (80, 81) in the 1950s, the character-
istic features being erythroid hypoplasia and reticulocytopenia.
Further studies in subhuman primates fed a riboflavin-deficient
diet showed marked disturbances in the production of red blood
cells in the bone marrow and in the kinetics of iron handling (82,
83). Some of the effects of riboflavin deficiency on the activity of
the bone marrow may be mediated by the adrenal cortex, which is
both structurally and functionally impaired by riboflavin defi-
ciency (84). More recent work, however, suggests other mecha-
nisms whereby riboflavin deficiency might interfere with iron han-
dling and thereby influence hematologic status.

Ferritin iron mobilization

The mobilization of iron from the intracellular protein ferritin
is a reducing process. Reduced flavins can evidently reduce and
thereby mobilize ferritin iron in a variety of tissues, at a rate that
is physiologically relevant (85, 86). We and others have shown
that tissues from rats fed riboflavin-deficient diets are less effi-
cient at mobilizing ferritin iron than are tissues from control ani-
mals (87–89). In our experience, the most profound effect is in
mucosal preparations from the gastrointestinal tract, suggesting a
relevance to iron absorption (90).

Iron absorption and loss

Intervention studies in humans further support the idea that
riboflavin status might influence iron handling, possibly includ-
ing effects at the level of iron absorption. Correcting a riboflavin
deficiency in pregnant or lactating women, adult males, and
school-aged children improved the hematologic response to iron
supplements (61, 91–93). Subsequently, animal studies confirmed
that moderate riboflavin deficiency impairs iron absorption (94,
95), and mechanistic studies in vitro provided further evidence
for such an effect (96). In addition to effects on iron absorption,
riboflavin deficiency in weanling rats was shown to significantly
increase the rate of gastrointestinal iron loss (95). The mecha-
nism for this is discussed in the section “Riboflavin and gas-
trointestinal development.” There has been a single attempt to
show an effect of riboflavin status on iron absorption in humans
by using a stable isotope of iron (58Fe) (97). In that study, there
was large variability in iron absorption between subjects, and we
could find no measurable effect on iron absorption. However, the
study did show an effect of riboflavin supplements on the con-
centration of circulating hemoglobin, suggesting that improving
riboflavin status had an effect on iron absorption or iron mobi-
lization from existing stores.

Riboflavin and gastrointestinal development

The maturation of gastrointestinal function at the time of wean-
ing is regulated in part by changes in the composition of the diet.
Animal studies have identified qualitative and quantitative
changes in the gastrointestinal tract after alterations in diet at this
time. Weanling rats fed a riboflavin-deficient diet from weaning
showed early morphologic and cell kinetic changes in the gas-
trointestinal tract, some of which were not reversible with correc-
tion of the riboflavin deficiency (98–101). After only 4 d of feed-
ing a riboflavin-deficient diet, a significant increase in the size and
cellularity of the crypts was seen, with a decreased incidence of
bifurcating crypts and a decreased proliferation index. Seven days
of riboflavin depletion led to fewer villi per unit area of mucosa
than in controls, suggesting a smaller absorptive surface area.
After more prolonged depletion, villus hypertrophy was observed
and may represent an adaptation response to this deficiency.

Recent work has shown that even when riboflavin is supplied to
tissues intraperitoneally, the absence of riboflavin from the lumen
of the gastrointestinal tract from the time of weaning leads to a
disruption of normal gastrointestinal development in rats. The
changes in gastrointestinal development mirror early effects of
riboflavin deficiency induced by feeding a diet deplete in
riboflavin from weaning (101). Duodenal crypts increased in cel-
lularity and depth, but the proliferative index and the proportion
of crypts bifurcating decreased. These results suggest that a crypt-
sensing mechanism may be involved in the gastrointestinal
response to dietary depletion of riboflavin. This has important
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implications for the effects of early dietary inadequacy of
riboflavin on gastrointestinal maturation. These effects may occur
in utero if mothers are riboflavin deficient during pregnancy,
which is the case in many developing countries.

Such marked effects of riboflavin deficiency on the develop-
ment of the gastrointestinal tract may be important in the etiology
of growth impairment associated with riboflavin deficiency,
through general effects on the efficiency of nutrient absorption.
This remains to be established.

Riboflavin, neurodegeneration, and peripheral neuropathy

Symptoms of neurodegeneration and peripheral neuropathy
have been documented in several studies of riboflavin deficiency
in different species. Young, rapidly growing chickens fed a
riboflavin-depleted diet developed peripheral nerve demyelation
(102, 103). Peripheral nerve demyelination has also been docu-
mented in racing pigeons (104) and riboflavin-deficient rats
(105). Little information is available regarding the relevance of
these observations to humans, although an interesting case of a
2.5-y-old girl with biochemical evidence of moderate riboflavin
deficiency has been described. The child had a range of neuro-
logic abnormalities, with anemia and visual impairment (106).
With high-dose riboflavin supplementation, the anemia resolved
quickly and the neurologic and visual abnormalities resolved
over several months. Riboflavin plays a role in thyroxine metab-
olism, and riboflavin deficiency may contribute to the patho-
physiology of some mental illness via this route (107). An early
report of personality changes in riboflavin deficiency has not
been substantiated (108).

Riboflavin and cancer

The literature relating riboflavin with cancer is complex. Some
studies indicate that riboflavin deficiency increases the risk of can-
cer at certain sites, whereas others point to a possible attenuating
effect of riboflavin in the presence of some carcinogens and a pro-
tective effect of deficiency (109, 110). Some carcinogens are
metabolized by flavin-dependent enzymes, and in these instances
riboflavin may enhance or ameliorate the effects of the carcino-
gen (111). Studies in various animal species have shown that
riboflavin deficiency can lead to disruption of the integrity of the
epithelium of the esophagus, similar to precancerous lesions in
humans (84). Some epidemiologic studies have identified a rela-
tion between esophageal cancer and diets low in riboflavin
(112–114), although not all studies support such a relation (115).
Combined daily supplements of riboflavin and niacin over 5 y
were effective in reducing the incidence of esophageal cancer in
Linxian, China, an area with a high prevalence of this type of can-
cer (116). Recent work has shown that riboflavin deficiency in rats
exposed to hepatocarcinogens leads to increased DNA strand
breakage. Induction of repair enzymes, which contribute to the
resistance to malignant transformations, was also enhanced in the
riboflavin-deficient animals (111). High-dose riboflavin supple-
mentation reversed both effects to near-normal values. Also sup-
portive of a protective role of riboflavin in carcinogenesis is the
observation that carcinogen binding to DNA is increased in
riboflavin-deficient rats (117).

Poor riboflavin status has also been implicated as a risk factor
for cervical dysplasia, a precursor condition for invasive cervical
cancer (118). A case-control study of 257 cases of cervical dys-
plasia and 133 controls showed an increased risk of cervical dys-
plasia at a riboflavin intake of < 1.2 mg/d, after correction for

known risk factors and total energy intake. There was a signifi-
cant trend effect. This study also identified lower intakes of vita-
min A and folate as risk factors. It may be important that
riboflavin has a role in the metabolism of folate, and low dietary
riboflavin might therefore exacerbate the effects of low dietary
folate in this context. This is an area that deserves further study,
perhaps with the use of a more rigorous approach to estimating
dietary intake and with the inclusion of a biochemical measure of
riboflavin status.

Riboflavin and cardiovascular diseases

Flavin reductase and dihydroriboflavin

Dihydroriboflavin, produced from riboflavin by NADPH-
dependent flavin reductase (EC 1.5.1.30), has been shown to be an
efficient reducing agent for heme proteins containing ferric iron
and therefore a potential antioxidant. Interesting work has
emerged to indicate that riboflavin might have protective effects
against the tissue damage associated with ischemia-reperfusion,
probably mediated by flavin reductase and the reduction by dihy-
droriboflavin of oxidized heme proteins (119–121). All studies so
far have been conducted in animal models. Riboflavin, adminis-
tered in low concentrations in vivo or to tissues ex vivo, reduced
cellular injury in 3 models: ischemia-reperfusion injury in isolated
hearts, activated complement-induced lung injury, and brain
edema after hypoxia-reoxygenation. Because of its nontoxicity,
riboflavin is an attractive candidate as a reductant of iron in heme
proteins for the protection of tissues from oxidative injury. The
potential therapeutic role for this vitamin in this context should
be the subject of intense investigation. Whether riboflavin status
might influence recovery from oxidative injury associated with
stroke, for example, remains to be established.

Riboflavin as a modulator of homocysteine concentrations

In recent years there has been much interest in the importance
of plasma homocysteine as a graded risk factor for cardiovascular
disease (122, 123). Homocysteine is a thiol-containing amino acid
that arises as a product of the metabolism of the essential amino
acid methionine. It is not incorporated into protein and therefore
its concentration is regulated by the rate of its synthesis and
metabolism. The main determinants of the homocysteine concen-
tration in tissues and consequently in the circulation are genotype
and diet. Homocysteine is metabolized through 2 main routes,
transsulfuration, which is vitamin B-6 dependent, and remethy-
lation to methionine, which is folate, vitamin B-12, and
riboflavin dependent. Most attention has been directed toward
the importance of folate, which is a strong independent predic-
tor of plasma homocysteine and which has homocysteine-low-
ering activity (124). Supplementary vitamin B-12 has modest
homocysteine-lowering effects under certain circumstances
(124), whereas reports of the effects of supplementary vitamin
B-6 are inconsistent (125, 126). Riboflavin has been largely
ignored, despite the fact that FAD is a cofactor for methylenete-
trahydrofolate reductase (EC 1.7.99.5), which metabolizes folate
to the form used in homocysteine methylation. A common muta-
tion of methylenetetrahydrofolate reductase, (the 677C→T ther-
molabile variant), for which 5–30% of different populations are
reported to be homozygous, is associated with increased plasma
homocysteine concentrations (127). Further evidence for a role of
riboflavin in homocysteine homeostasis comes from a report of
elevated homocysteine in the skin of riboflavin-deficient rats
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(128). Riboflavin status was reported as being a modulator of
plasma homocysteine concentrations in healthy adults, especially
among subjects homozygous for the common 677C→T mutation
(129). Riboflavin intake also emerged as a factor influencing
plasma total homocysteine in men and women from the Framing-
ham Offspring Cohort (130). We recently confirmed a folate-
riboflavin interaction in determining plasma homocysteine that is
unrelated to genotype (131).

Riboflavin in vision

Corneal vascularization and corneal opacity have been
described in animals fed diets low in riboflavin. Cataracts have
also been described in animals fed riboflavin-deficient diets
(132, 133). The importance of riboflavin deficiency in the eti-
ology of cataracts in elderly humans is not fully understood
(134). More recently, it was hypothesized that riboflavin defi-
ciency may be associated with night blindness in some com-
munities and that improving riboflavin status might enhance the
improvement in night blindness evoked by vitamin A.
Venkataswamy (135) reported riboflavin-responsive night blind-
ness in India. Riboflavin-dependent photoreceptors (cryp-
tochromes) identified in the retina are thought to play a role in
the process of dark adaptation (136, 137). Dietary riboflavin
might influence dark adaptation through these photoreceptors,
through interaction with vitamin A, or independently. This is an
area that deserves further attention.

INTERACTION OF RIBOFLAVIN WITH OTHER 
B GROUP VITAMINS

Folate

Riboflavin deficiency interferes with the metabolism of other
nutrients, especially other B vitamins, through flavin coenzyme
activity. Effects of acute riboflavin deficiency on fetal develop-
ment have similarities with effects of folate deficiency, possibly
mediated by effects of flavins on folate metabolism. Weanling rats
fed a riboflavin-deficient diet showed a marked reduction in activ-
ity of hepatic methylenetetrahydrofolate reductase, referred to ear-
lier as the source of the methyl group in the conversion of homo-
cysteine to methionine (138). This has taken on greater
significance with the interest in elevated plasma homocysteine
concentrations as a risk factor for cardiovascular disease and is
discussed in the section “Riboflavin and cardiovascular diseases.”

Cyanocobalamin (vitamin B-12)

The enzyme methionine synthase (EC 2.1.1.13), which con-
verts homocysteine to methionine, is dependent on 5-methylte-
trahydrofolate as a methyl donor but also on vitamin B-12, as
methyl cobalamin (139). The synthesis of methylcobalamin
appears in turn to be dependent on flavoproteins. Despite this
interrelation between riboflavin and vitamin B-12, there is no
clear evidence that riboflavin deficiency leads to a functional
deficiency of vitamin B-12.

Pyridoxine

Similarities exist between the clinical signs of riboflavin defi-
ciency and those of pyridoxine (vitamin B-6) deficiency, and sup-
plementation with both vitamins can elicit a faster and more com-
plete recovery than can single supplements (140). In fact, the
metabolism of vitamin B-6 is flavin-dependent, and studies in

humans and animals have shown impaired synthesis of pyridoxal
phosphate in riboflavin deficiency (141, 142). Correcting a
riboflavin deficiency in humans elicited an increase in the activ-
ity of erythrocyte pyridoxamine phosphate oxidase (EC 2.6.1.54;
143), which is responsible for converting pyridoxamine phosphate
and pyridoxine phosphate to pyridoxal phosphate (144).

CONCLUSIONS

Riboflavin or its derivatives are found in a wide variety of
foods, although milk and milk products make a particularly
important contribution to the riboflavin intakes of populations
in Western countries. Riboflavin deficiency is endemic in popu-
lations consuming little milk or meat products. A decline in the
consumption of milk and milk products in Western countries
may contribute to the poor riboflavin status reported in sections
of the population, particularly young people. Subclinical
riboflavin deficiency may contribute to increased concentrations
of plasma homocysteine, with an associated increased risk of
cardiovascular disease. It may also be associated with impaired
handling of iron and night blindness. The importance to humans
of some of the effects of riboflavin deficiency observed in ani-
mal studies remains to be established. Current research of pub-
lic health relevance relates to the importance of riboflavin as a
factor in protecting against cardiovascular diseases and cancers
and in vision.
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